博客
关于我
敌兵布阵(线段树查询最大值)
阅读量:734 次
发布时间:2019-03-21

本文共 1959 字,大约阅读时间需要 6 分钟。

敌兵布阵问题的代码实现

情况分析

我们需要处理多个测试用例,每个测试用例包含若干命令,用于管理敌人的工兵营地的数量。本题的主要操作包括:

  • 添加人数:通过Add i j命令,向第i个工兵营地增加j人(j不超过30)。
  • 减少人数:通过Sub i j命令,从第i个工兵营地减少j人(j不超过30)。
  • 查询区间和:通过Query i j命令,询问从第i个到第j个工兵营地的总人数。
  • 结束处理:通过End命令告知系统当前处理结束。
  • 代码实现

    数据结构与工具

    为了高效处理大量数据和多次查询,我们采用了折半查找法(即二分查找)配合线段树结构。线段树的每个节点维持其区间内的总工兵数量,并支持快速更新和查询操作。

    核心代码

    线段树定义

    struct node {    int l, r;    int sum;};

    线段树操作

  • 构建线段树
    void build(int u, int l, int r) {    tr[u].l = l;    tr[u].r = r;    if (l == r) {        tr[u].sum = w[l];        return;    }    int mid = l + r > 1 ? l + (r - l) / 2 : l;    build(u << 1, l, mid);    build(u << 1 | 1, mid + 1, r);    tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;}
  • 2. **更新操作**:   ```c++   void updata(int u, int pos, int val) {       if (tr[u].l == tr[u].r) {           tr[u].sum += val;           return;       }       int mid = tr[u].l + tr[u].r > 1 ? tr[u].l + (tr[u].r - tr[u].l) / 2 : tr[u].l;       if (pos <= mid) {           updata(u << 1, pos, val);       } else {           updata(u << 1 | 1, pos, val);       }       tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;   }
    1. 查询操作
      int quary(int u, int l, int r) {    if (tr[u].l > r || tr[u].r < l) {        return 0;    }    int res = 0;    int mid = tr[u].l + tr[u].r > 1 ? tr[u].l + (tr[u].r - tr[u].l) / 2 : tr[u].l;    if (l <= mid) {        res += quary(u << 1, l, r);    }    if (r > mid) {        res += quary(u << 1 | 1, l, r);    }    return res;}
    2. ### 实现步骤1. **读取输入**:   开始读取测试用例数`t`,每个测试用例读取`n`,随后读取`n`个初始工兵数量。2. **初始化线段树**:   使用递归函数`build`初始化线段树,将每个单独的工兵营地值映射到叶子节点,然后逐步向上合并每个区间的总和。3. **处理命令**:   读取每条命令并执行相应操作:   - `Add i j`:调用`updata`函数,向第`i`个工兵营地增加`j`人。   - `Sub i j`:同样调用`updata`函数,向第`i`个工兵营地减少`j`人。   - `Query i j`:调用`quary`函数,查询第`i`到第`j`个工兵营地的总人数。   - `End`:结束当前测试用例的处理。## 样例测试### 样例输入

      1101 2 3 4 5 6 7 8 9 10Query 1 3Add 3 6Query 2 7Sub 10 2Add 6 3Query 3 10End

      ### 样例输出

      Case 1:63359

      ## 代码解析这个代码实现了线段树的基本操作,能够在O(log n)时间内完成更新和查询操作。线段树的高效性能使得多次查询和频繁更新完全不会影响系统性能。通过这种方式,我们可以快速响应每个`Query`命令,并保持代码的高效性。

    转载地址:http://goagz.baihongyu.com/

    你可能感兴趣的文章
    nestesd exception is java .lang.NoSuchMethodError:com.goolge.common.collect
    查看>>
    nestJS学习
    查看>>
    net core 环境部署的坑
    查看>>
    NET Framework安装失败的麻烦
    查看>>
    Net 应用程序如何在32位操作系统下申请超过2G的内存
    查看>>
    Net.Framework概述
    查看>>
    NET3.0+中使软件发出声音[整理篇]<转>
    查看>>
    net::err_aborted 错误码 404
    查看>>
    NetApp凭借领先的混合云数据与服务把握数字化转型机遇
    查看>>
    NetAssist网络调试工具使用指南 (附NetAssist工具包)
    查看>>
    Netbeans 8.1启动参数配置
    查看>>
    NetBeans IDE8.0需要JDK1.7及以上版本
    查看>>
    NetBeans之JSP开发环境的搭建...
    查看>>
    NetBeans之改变难看的JSP脚本标签的背景色...
    查看>>
    netbeans生成的maven工程没有web.xml文件 如何新建
    查看>>
    netcat的端口转发功能的实现
    查看>>
    NetCore 上传,断点续传,可支持流上传
    查看>>
    Netcraft报告: let's encrypt和Comodo发布成千上万的网络钓鱼证书
    查看>>
    Netem功能
    查看>>
    netfilter应用场景
    查看>>